Sequential version of 'nixtla_client_detect_anomalies' This is a private function of 'nixtlar'
Source:R/nixtla_client_detect_anomalies.R
nixtla_client_detect_anomalies.Rd
Sequential version of 'nixtla_client_detect_anomalies' This is a private function of 'nixtlar'
Usage
nixtla_client_detect_anomalies(
df,
freq = NULL,
id_col = "unique_id",
time_col = "ds",
target_col = "y",
level = c(99),
clean_ex_first = TRUE,
model = "timegpt-1"
)
Arguments
- df
A data frame with time series data.
- freq
Frequency of the data.
- id_col
Column that identifies each series.
- time_col
Column that identifies each timestep.
- target_col
Column that contains the target variable.
- level
The confidence level (0-100) for the prediction interval used in anomaly detection. Default is 99.
- clean_ex_first
Clean exogenous signal before making the forecasts using 'TimeGPT'.
- model
Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-long-horizon" if you want to forecast more than one seasonal period given the frequency of the data.
Examples
if (FALSE) { # \dontrun{
nixtlar::nixtla_set_api_key("YOUR_API_KEY")
df <- nixtlar::electricity
fcst <- nixtlar::nixtla_client_anomaly_detection(df, id_col="unique_id")
} # }