Skip to contents

1. Uncertainty quantification via quantiles

For uncertainty quantification, TimeGPT can generate both prediction intervals and quantiles, offering a measure of the range of potential outcomes rather than just a single point forecast. In real-life scenarios, forecasting often requires considering multiple alternatives, not just one prediction. This vignette will explain how to use quantiles with TimeGPT via the nixtlar package.

Quantiles represent the cumulative proportion of the forecast distribution. For instance, the 90th quantile is the value below which 90% of the data points are expected to fall. Notably, the 50th quantile corresponds to the median forecast value provided by TimeGPT. The quantiles are produced using conformal prediction, a framework for creating distribution-free uncertainty intervals for predictive models.

This vignette assumes you have already set up your API key. If you haven’t done this, please read the Get Started vignette first.

2. Load data

For this vignette, we will use the electricity consumption dataset that is included in nixtlar, which contains the hourly prices of five different electricity markets.

df <- nixtlar::electricity
head(df)
#>   unique_id                  ds     y
#> 1        BE 2016-10-22 00:00:00 70.00
#> 2        BE 2016-10-22 01:00:00 37.10
#> 3        BE 2016-10-22 02:00:00 37.10
#> 4        BE 2016-10-22 03:00:00 44.75
#> 5        BE 2016-10-22 04:00:00 37.10
#> 6        BE 2016-10-22 05:00:00 35.61

3. Forecast with quantiles

TimeGPT can generate quantiles when using the following functions:

For any of these functions, simply set the quantiles argument to the desired values as a vector. Keep in mind that quantiles should all be numbers between 0 and 1. You can use either quantiles or level for uncertainty quantification, but not both.

fcst <- nixtla_client_forecast(df, h = 8, quantiles = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9))
#> Frequency chosen: h
head(fcst)
#>   unique_id                  ds  TimeGPT TimeGPT-q-10 TimeGPT-q-20 TimeGPT-q-30
#> 1        BE 2016-12-31 00:00:00 45.19067     35.50871     38.47807     40.71672
#> 2        BE 2016-12-31 01:00:00 43.24491     35.37606     37.77021     39.32019
#> 3        BE 2016-12-31 02:00:00 41.95889     35.34064     37.21904     39.44587
#> 4        BE 2016-12-31 03:00:00 39.79668     32.32713     34.98742     35.96046
#> 5        BE 2016-12-31 04:00:00 39.20456     30.99962     32.74742     34.72213
#> 6        BE 2016-12-31 05:00:00 40.10912     32.43535     34.24889     35.10847
#>   TimeGPT-q-40 TimeGPT-q-50 TimeGPT-q-60 TimeGPT-q-70 TimeGPT-q-80 TimeGPT-q-90
#> 1     43.92536     45.19067     46.45599     49.66462     51.90328     54.87264
#> 2     42.58577     43.24491     43.90405     47.16964     48.71962     51.11376
#> 3     40.85597     41.95889     43.06182     44.47191     46.69875     48.57715
#> 4     37.46490     39.79668     42.12846     43.63290     44.60593     47.26623
#> 5     36.01357     39.20456     42.39555     43.68699     45.66169     47.40950
#> 6     38.76706     40.10912     41.45117     45.10976     45.96934     47.78288

4. Plot quantiles

nixtlar includes a function to plot the historical data and any output from nixtlar::nixtla_client_forecast, nixtlar::nixtla_client_historic, nixtlar::nixtla_client_detect_anomalies and nixtlar::nixtla_client_cross_validation. If you have long series, you can use max_insample_length to only plot the last N historical values (the forecast will always be plotted in full).

When available, nixtlar::nixtla_client_plot will automatically plot the quantiles.

nixtla_client_plot(df, fcst, max_insample_length = 100)