TimeGPT historic forecast
Usage
nixtla_client_historic(
  df,
  freq = NULL,
  id_col = NULL,
  time_col = "ds",
  target_col = "y",
  level = NULL,
  quantiles = NULL,
  finetune_steps = 0,
  finetune_depth = 1,
  finetune_loss = "default",
  clean_ex_first = TRUE,
  model = "timegpt-1"
)Arguments
- df
- A tsibble or a data frame with time series data. 
- freq
- Frequency of the data. 
- id_col
- Column that identifies each series. 
- time_col
- Column that identifies each timestep. 
- target_col
- Column that contains the target variable. 
- level
- The confidence levels (0-100) for the prediction intervals. 
- quantiles
- Quantiles to forecast. Should be between 0 and 1. 
- finetune_steps
- Number of steps used to fine-tune 'TimeGPT' in the new data. 
- finetune_depth
- The depth of the fine-tuning. Uses a scale from 1 to 5, where 1 means little fine-tuning and 5 means that the entire model is fine-tuned. 
- finetune_loss
- Loss function to use for fine-tuning. Options are: "default", "mae", "mse", "rmse", "mape", and "smape". 
- clean_ex_first
- Clean exogenous signal before making the forecasts using 'TimeGPT'. 
- model
- Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-long-horizon" if you want to forecast more than one seasonal period given the frequency of the data. 
Examples
if (FALSE) { # \dontrun{
  nixtlar::nixtla_set_api_key("YOUR_API_KEY")
  df <- nixtlar::electricity
  fcst <- nixtlar::nixtla_client_historic(df, id_col="unique_id", level=c(80,95))
} # }
