Skip to contents

NEWS (28 Aug 2024): Parallel processing is now available in nixtlar

The development version of nixtlar now supports parallel processing, making it suitable for handling large datasets with thousands of time series. To access this functionality, simply install the package from GitHub.

library(devtools)
devtools::install_github("Nixtla/nixtlar")

Configure the new num_partitions parameter in any of the nixtlar methods as follows:

  • num_partitions=NULL: This is the default setting, operating in sequential mode, equivalent to num_partitions=1.
  • num_partitions="auto": Automatically uses all available resources as determined by future::availableCores().
  • num_partitions can be set to any positive integer. If it exceeds the number of available resources determined by future::availableCores(), it will default to the maximum available cores.
nixtlar::nixtla_client_forecast(df, h=8, id_col="unique_id", num_partitions="auto")

Note that df must be an R data frame or a tsibble. See data requierements for more details.

TimeGPT-1

The first foundation model for time series forecasting and anomaly detection

TimeGPT is a production-ready, generative pretrained transformer for time series forecasting, developed by Nixtla. It is capable of accurately predicting various domains such as retail, electricity, finance, and IoT, with just a few lines of code. Additionally, it can detect anomalies in time series data.

TimeGPT was initially developed in Python but is now available to R users through the nixtlar package.

Installation

nixtlar is available on CRAN, so you can install the latest stable version using install.packages.

# Install nixtlar from CRAN
install.packages("nixtlar")

# Then load it 
library(nixtlar)

Alternatively, you can install the development version of nixtlar from GitHub with devtools::install_github.

# install.packages("devtools")
devtools::install_github("Nixtla/nixtlar")

CRAN (v0.5.2) vs development version (v0.5.3)

Currently, the development version contains some features not yet available in CRAN. To learn more, please read the release notes here.

Forecast Using TimeGPT in 3 Easy Steps

library(nixtlar)
#> Registered S3 method overwritten by 'tsibble':
#>   method               from 
#>   as_tibble.grouped_df dplyr
  1. Set your API key. Get yours at dashboard.nixtla.io
nixtla_set_api_key(api_key = "Your API key here")
  1. Load sample data
df <- nixtlar::electricity
head(df)
#>   unique_id                  ds     y
#> 1        BE 2016-10-22 00:00:00 70.00
#> 2        BE 2016-10-22 01:00:00 37.10
#> 3        BE 2016-10-22 02:00:00 37.10
#> 4        BE 2016-10-22 03:00:00 44.75
#> 5        BE 2016-10-22 04:00:00 37.10
#> 6        BE 2016-10-22 05:00:00 35.61
  1. Forecast the next 8 steps ahead
nixtla_client_fcst <- nixtla_client_forecast(df, h = 8, id_col = "unique_id", level = c(80,95))
#> Frequency chosen: H
head(nixtla_client_fcst)
#>   unique_id                  ds  TimeGPT TimeGPT-lo-95 TimeGPT-lo-80
#> 1        BE 2016-12-31 00:00:00 45.19045      32.60115      40.42074
#> 2        BE 2016-12-31 01:00:00 43.24445      29.30454      36.91513
#> 3        BE 2016-12-31 02:00:00 41.95839      28.17721      35.55863
#> 4        BE 2016-12-31 03:00:00 39.79649      25.42790      33.45859
#> 5        BE 2016-12-31 04:00:00 39.20454      23.53869      30.35095
#> 6        BE 2016-12-31 05:00:00 40.10878      26.90472      31.60236
#>   TimeGPT-hi-80 TimeGPT-hi-95
#> 1      49.96017      57.77975
#> 2      49.57376      57.18435
#> 3      48.35815      55.73957
#> 4      46.13438      54.16507
#> 5      48.05812      54.87038
#> 6      48.61520      53.31284

Optionally, plot the results

nixtla_client_plot(df, nixtla_client_fcst, id_col = "unique_id", max_insample_length = 200)

Anomaly Detection Using TimeGPT in 3 Easy Steps

Do anomaly detection with TimeGPT, also in 3 easy steps! Follow steps 1 and 2 from the previous section and then use the nixtla_client_detect_anomalies and the nixtla_client_plot functions.

nixtla_client_anomalies <- nixtlar::nixtla_client_detect_anomalies(df, id_col = "unique_id") 
#> Frequency chosen: H
head(nixtla_client_anomalies)
#>   unique_id                  ds     y anomaly TimeGPT-lo-99  TimeGPT
#> 1        BE 2016-10-27 00:00:00 52.58       0     -28.58336 56.07623
#> 2        BE 2016-10-27 01:00:00 44.86       0     -32.23986 52.41973
#> 3        BE 2016-10-27 02:00:00 42.31       0     -31.84485 52.81474
#> 4        BE 2016-10-27 03:00:00 39.66       0     -32.06933 52.59026
#> 5        BE 2016-10-27 04:00:00 38.98       0     -31.98661 52.67297
#> 6        BE 2016-10-27 05:00:00 42.31       0     -30.55300 54.10659
#>   TimeGPT-hi-99
#> 1      140.7358
#> 2      137.0793
#> 3      137.4743
#> 4      137.2498
#> 5      137.3326
#> 6      138.7662
nixtlar::nixtla_client_plot(df, nixtla_client_anomalies, id_col = "unique_id", plot_anomalies = TRUE)

Features and Capabilities

nixtlar provides access to TimeGPT’s features and capabilities, such as:

  • Zero-shot Inference: TimeGPT can generate forecasts and detect anomalies straight out of the box, requiring no prior training data. This allows for immediate deployment and quick insights from any time series data.

  • Fine-tuning: Enhance TimeGPT’s capabilities by fine-tuning the model on your specific datasets, enabling the model to adapt to the nuances of your unique time series data and improving performance on tailored tasks.

  • Add Exogenous Variables: Incorporate additional variables that might influence your predictions to enhance forecast accuracy. (E.g. Special Dates, events or prices)

  • Multiple Series Forecasting: Simultaneously forecast multiple time series data, optimizing workflows and resources.

  • Custom Loss Function: Tailor the fine-tuning process with a custom loss function to meet specific performance metrics.

  • Cross Validation: Implement out of the box cross-validation techniques to ensure model robustness and generalizability.

  • Prediction Intervals: Provide intervals in your predictions to quantify uncertainty effectively.

  • Irregular Timestamps: Handle data with irregular timestamps, accommodating non-uniform interval series without preprocessing.

Documentation

For comprehensive documentation, please refer to our vignettes, which cover a wide range of topics to help you effectively use nixtlar. The current documentation includes guides on how to:

The documentation is an ongoing effort, and we are working on expanding its coverage.

API Support

Are you a Python user? If yes, then check out the Python SDK for TimeGPT. You can also refer to our API reference for support in other programming languages.

How to Cite

If you find TimeGPT useful for your research, please consider citing the TimeGPT-1 paper. The associated reference is shown below.

Garza, A., Challu, C., & Mergenthaler-Canseco, M. (2024). TimeGPT-1. arXiv preprint arXiv:2310.03589. Available at https://arxiv.org/abs/2310.03589

License

TimeGPT is closed source. However, this SDK is open source and available under the Apache 2.0 License, so feel free to contribute!

Get in Touch

We welcome your input and contributions to the nixtlar package!

  • Report Issues: If you encounter a bug or have a suggestion to improve the package, please open an issue in GitHub.

  • Contribute: You can contribute by opening a pull request in our repository. Whether it is fixing a bug, adding a new feature, or improving the documentation, we appreciate your help in making nixtlar better.